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Abstract

Recently, we have developed an artificial neural network model, which was able to predict accurately the electrophoretic mobilities of relatively
small peptides. To examine the robustness of this methodology, a 3-3-1 back-propagation artificial neural network (BP-ANN) model was develope:
using the same inputs as the previous model, which were the Offord’s charge over mass tefff),(Quected steric substituent constaiy §
and molar refractivity (MR). The data set consisted of 102 peptides with a larger range of size than that of our earlier report — up to 42 amino
acid residues as compared to 13 amino acids in the initial study — that also included highly charged and hydrophobic peptides. The entire da
set was obtained from the published result by Janini and co-workers. The results of this model are compared with those obtained using multipl
linear regressions (MLR) model developed in this work and the multi-variable model released by Janini et al. Better predictive ability of the
BP-ANN model over the MLR indicates the non-linear characteristics of the electrophoretic mobility of peptides. The present model exhibits better
robustness than the MLR models in predicting CZE mobilities of a diverse data set at different experimental conditions. To explore the utility of
the ANN model in simulation of the CZE peptide maps, the profiles for the endoproteinase digests of melittin, glucagon and horse cytochrome
is studied in the present work.
© 2005 Published by Elsevier B.V.
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1. Introduction its high speed and high resolution for peptide analysis and also
its small sample size requirement. Among other advantages,
Peptide mapping is a widely used technique for characteri€ZE can be multiplexed and automated so that many experi-
zation of protein structure that involves digestion of a proteinments can be performed in parallel. However, electrophoretic
through enzymatic or chemical means and subsequent sepapeptide profiles obtained are sometimes very complex owing to
tion and detection of the resultant peptide mixture. The peptidéhe complicated nature of the samples. Generally, CE separation
maps serve as “fingerprints” that can be applied to rapid proteinf peptides is more successful than proteins because the smaller
identification and the detection of post-translational modificaimolecules tend to interact less compared with the capillary wall.
tions. The key parameter for separation of peptides, especially in
Capillary liquid chromatography (combined with MS/MS) is low ionic strength buffers, is their electrophoretic mobilities.
currently one of the most commonly used techniques for peptid&his parameter can be converted to migration time and a CZE
mapping1,2]. While this method provides excellent resolution, electropherogram can be simulated using a Gaussian function.
itis often slow and generally consumes relatively large quantitie3 herefore, calculation/prediction of this parameter is very useful
of peptides. Capillary zone electrophoresis (CZE) has receiveith peptide mapping studies.
considerable attention as peptide mapping method because of Several empirical models, based on Stoke’s law, have been
developed for the prediction of electrophoretic mobilities from
_— the charge to size ratif8—9]. The accuracy of these predic-
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amino acids chains and the end groups in peptides result imultivariate models is their applications as a tool in the con-
inaccurate calculation of peptide charges and (3) molar mass &ruction of a data base of peptide maps. A successful model
often used to describe peptide size, however, the exact effect should be capable of providing accurate prediction of migration
molar mass on electrophoretic mobility is yet to be determinedbehavior in CZE for a wide range of compounds and at var-
The main difference between the various reported empiricabus experimental conditions. Therefore, in the present work,
models lies in the dependence of mobility on molar mass o& data set that has been reported by Janini et al. was chosen
peptides. [12].
Janini et al. have obtained the electrophoretic mobility of 58
peptides ranging in size from 2 to 39 amino acids and charg2. Experimental
from 0.65 to 7.8710]. Based on this data set, they concluded
that the Offord model is the best predictor of mobility, butitfails 2.1. Data set
when applied to hydrophobic and highly charged peptides. These
researchers also showed that peptide electrophoretic mobil- Development of the multiple linear regression (MLR) and
ity cannot be successfully predicted with reasonable degreartificial neural networks (ANN) in the present work relies on a
of accuracy for all different categories of peptides by rely-data set taken from referenfE2]. This data setTable ) con-
ing on two-parameter models, namely charg® @nd size sists of 102 peptides ranging in size from 2 to 42 amino acid
dependence—size is usually expressed in terms of the numbmsidues, which varies in charge from 0.65 to 16. The data set
of amino acids residues/, or molar massy [10]. includes 18 dipeptides, 32 peptides with five or less amino acid
In two other efforts, Janini and coworkers have developedesidues and 72 peptides with six or more amino acid residues.
a multi-variable computer model, based on a closest-neighbdrhe electrophoretic mobilities of these peptides have been deter-
algorithm for the prediction of the electrophoretic mobilities mined in CZE using a 50 mM phosphate buffer at pH 2.5,Q2
of peptideg11,12] A computer algorithm was developed that and a capillary coated with 10% polyacrylamide. It should be
matches the physical parameters of unknown peptides to themoted that these experimental conditions are different from those
closest-neighbor in the peptide set for more accurate estimatiome used for the development of the ANN model in our previous
of their mobilities. Their model is based on assumption that thevork [13]. According to the authors, the use of polyacrylamide
electrophoretic mobilities can be calculated by a product of threeoated capillary provided stability and migration time repro-
functions representing peptide charge, length and Width In  ducibility throughout the experiments to within 1% R$I2].
this model, the number of amino acid residues was considerddowever, in order to determine the uncertainty of the experi-
as a measure of peptide length and the width of a protein imental electrophoretic mobilities, Janini et al. have measured
summation of the residue widths of its amino acids. The residuéhe mobilities of six peptides and the reference standard using
width for each amino acid was assumed to be proportional tdwo independent columns with different buffer preparations in
the relative mass of the residue, being 1 for glycine and 130 foseparate days. They obtained an average RSD of 2.34%, for
tryptophane. Although, these researchers have obtained excéite measured electrophoretic mobilities that had a range of
lent results, but the main drawback of their model is that all4.73x 10 °cn?s 1V~ (for FIGITEAAANLVPMVATV) to
functions appearing in the model are data dependent. In 0th&3.03x 10-° cn?s 1 V1 (for KKKKK).
words, their model is based on a closest-neighbor algorithm and To apply the ANN modeling for the Janini et al. results, the
is not robust. data set was randomly divided into three groups of training, test
We have recently developed an artificial neural networkand validation sets consisting of 70, 20 and 12 peptides, respec-
model for the following three objectives: (1) to explore thetively. The training set was used for the model generation. The
linear/non-linear characteristics of the electrophoretic mobiltest set plays a different role in the cases of the MLR and the
ities of peptides; (2) to assess the predictive abilities of theANN models. For the ANN model, this set was used for early
various reported models; and (3) to investigate the effects aftopping to optimize learning iteration size and avoid overtrain-
other structural factors, in addition to charge and size, on eledng. The validation set was used to assess the accuracy of the
trophoretic mobility{13]. The ANN model showed a significant ANN predictions. On the other hand, in the case of the MLR
improvement in the predictive ability over the empirical mod- model, the test set combined with the validation set was used to
els and the multiple linear regression (MLR) treatmgi8]. evaluate the model. As can be seen froable 1 the peptides
This improvement was especially pronounced for the peptidem the test and validation sets were chosen in a way that ade-
of higher charges that contain basic amino acids arginine, histquately represents the training set in terms of size, charge and
dine and lysine. This model was based on a data set consistimgpmposition.
of the electrophoretic mobilities for 125 peptides ranging in size
between 2 and 14 amino acids. 2.2. Regression analysis
The main aims of the present work, in addition to the above
mentioned objectives, were: (1) evaluating the robustness of the The main aim of the present work was to investigate the
generated model, (2) comparison of the model with the multitobustness of our previous quantitative structure—mobility rela-
variable model developed by Janini et al., and (3) investigatingionships (QSMR) model. Therefore, as first step for developing
the utility of the model in simulation of the maps of some pep-the regression model, the three descriptors appearing in our
tides. However, long range goal of the development of suclprevious QSMR models were chosen as the most suitable param-
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Table 1
Experimental and calculated values of electrophoretic mobilities using MLR and ANN models together with the values of the descriptors
No. Peptide sequence Descripfors Exp MLR ANN
QM Esc MR Jef X Hef X Percent Hef X Percent
10° 10° deviation 100 deviation
Training set
1 AA 0.0283 0.00 11.3 18.77 17.85 491 19.84 —5.68
2 DD 0.0165 —1.56 23.2 10.31 13.02 —26.33 11.92 —15.58
3 EE 0.0192 —-1.24 325 12.52 14.22 —13.55 13.58 —8.46
4 FA 0.0218 —0.70 35.7 14.86 15.40 —3.63 15.20 -2.29
5 FF 0.0181 —1.40 60.0 12.81 13.99 -9.25 13.06 -1.95
6 FG 0.0227 —0.50 31.0 15.16 15.76 —-3.98 15.57 —2.69
7 FL 0.0196 —-1.94 49.6 13.33 14.30 —7.26 13.51 -1.35
8 FV 0.0202 -1.79 45.0 13.90 14.56 —4.77 13.89 0.05
9 GG 0.0321 0.40 21 21.70 19.36 10.79 21.70 0.00
10 HG 0.0515 —0.46 24.8 27.04 26.67 1.36 29.35 —8.53
11 LL 0.0213 —2.48 39.2 14.55 14.73 -1.21 14.61 —0.43
12 PG 0.0269 0.20 15.0 18.43 17.43 5.41 18.83 -2.15
13 RK 0.0629 —-1.24 55.1 32.00 31.02 3.05 30.98 3.17
14 A% 0.0231 —2.18 29.9 15.39 15.42 -0.20 16.17 —5.08
15 ww 0.0156 -1.32 79.6 11.05 13.23 —-19.77 12.80 —15.84
16 YY 0.0170 —1.40 63.7 12.10 13.59 —12.34 13.29 -9.81
17 FFF 0.0140 -2.10 90.0 10.38 12.48 —20.28 11.92 —14.80
18 SSS 0.0195 —0.84 35.5 13.22 14.48 —9.55 14.34 —8.44
19 AAAA 0.0185 0.00 22.6 13.87 14.24 —2.64 13.72 1.10
20 ANSK 0.0328 —1.68 57.0 20.91 19.46 6.93 22.53 —7.76
21 HMTE 0.0283 —2.64 75.0 18.91 17.64 6.70 19.73 —4.34
22 PARR 0.0451 —-1.24 79.7 27.65 24.46 11.55 27.43 0.78
23 KKKKK 0.0770 -3.10 125.3 33.03 36.45 -10.37 31.76 3.86
24 RPPGF 0.0266 -1.12 89.0 18.36 17.55 4.42 18.72 —-1.95
25 YGGFL 0.0123 —-2.24 83.5 9.75 11.76 —20.57 10.58 —8.49
26 GIGAVLK 0.0243 —4.16 86.9 15.50 15.76 -1.67 16.69 —7.66
27 AAGIGILTV 0.0096 —5.68 98.9 6.50 9.83 —-51.20 8.78 —35.00
28 ACHGRDRRT 0.0453 —3.63 144.0 26.54 24.39 8.08 26.90 -1.37
29 AFLPWHRLF 0.0253 —5.82 212.5 16.55 16.73 -1.09 17.53 —5.93
30 MLDLQPETT 0.0071 —6.39 146.8 6.33 9.10 —43.70 8.36 —-32.11
31 RPPGFSPFR 0.0273 —-2.72 174.8 19.71 18.07 8.35 18.47 6.30
32 VLQELNVTV 0.0082 —8.30 145.7 6.97 8.93 —28.10 8.14 —16.80
33 VVRRYPHHE 0.0429 —6.06 199.6 27.38 23.24 15.10 25.55 6.70
34 YLSGADLNL 0.0076 —6.06 135.1 6.23 9.28 —49.00 8.39 —34.67
35 KLVVVGAAGV 0.0195 —5.82 117.8 14.10 13.72 2.67 13.32 5.55
36 KLVVVGADGV 0.0180 —6.60 123.7 13.13 12.96 1.29 12.52 4.67
37 ACLGRDRRTEE 0.0312 —5.45 172.3 20.97 18.73 10.66 21.16 —0.88
38 CRHRRRHRRGC 0.0676 —4.84 228.9 29.68 33.25 —12.04 30.72 —3.52
39 LLGRNSFEMRV 0.0234 —7.82 210.9 17.02 15.44 9.31 17.22 -1.18
40 RPKPQQFFGLM 0.0232 —-5.75 225.0 16.98 16.07 5.34 17.77 —4.64
41 YAEGDVHATSK 0.0245 —5.08 159.4 17.40 16.20 6.89 18.51 —6.37
42 ACPGKDRRTGGGN 0.0316 -3.15 146.7 19.11 19.36 —1.28 22.64 —18.49
43 ACPGTDRRTGGGN 0.0235 —3.06 133.5 15.08 16.18 -7.32 16.56 -9.84
44 ACPGRNRRTEEENL 0.0273 —6.85 219.8 19.40 17.26 11.03 20.01 -3.14
45 MGGMNWRPILTIT 0.0134 —10.45 248.6 10.20 11.17 —9.46 12.08 —18.47
46 SPALNKMFCELAKT 0.0211 —7.46 222.0 15.71 14.73 6.25 16.32 -3.90
47 VLTTGLPALISWIK 0.0139 —10.45 233.9 10.50 11.24 -7.07 11.83 —12.63
48 HRSCRRRKRRSCRHR 0.0733 —7.46 336.7 30.27 35.57 —17.51 30.68 -1.34
49 YSPALNKMCCQLAKT 0.0201 —7.46 226.7 14.90 14.41 3.27 15.38 -3.23
50 IITLEDSSNLLGRNSF 0.0118 —12.39 263.1 11.33 10.12 10.68 10.50 7.36
51 LAPPQHHLIQVGNLRV 0.0260 -11.27 273.2 15.01 15.92 —6.07 18.07 —20.40
52 LDDRNTFRRSVVVPYE 0.0232 —11.54 307.9 18.30 15.08 17.57 16.53 9.66
53 PPPGTRVRVMAIKQSQ 0.0262 —8.33 268.2 18.20 16.84 7.47 18.26 -0.34
54 TYSPALNRMFCQLAKT 0.0188 —8.69 2735 14.77 13.97 5.44 14.66 0.74
55 DGLAPPQHRIRVEGNLR 0.0305 —10.10 284.7 18.98 18.10 4.65 20.40 —7.47
56 KSSQYIKANSKFIGITE 0.0248 -11.28 299.5 17.05 15.70 7.94 17.48 —2.53
57 LGRNSFEVCVCACPGRD 0.0183 —7.42 215.4 13.66 13.63 0.21 14.19 —3.88
58 NHQLLSPAKTGWRIFHP 0.0304 —10.02 323.1 19.42 18.40 5.24 20.28 —4.41
59 NTFRHSVVEPYEPPEVG 0.0179 -9.20 290.2 13.55 13.61 —0.43 14.52 —7.13
60 SSCMGGMNQRPILTIIT 0.0123 —10.97 2515 10.66 10.62 0.36 10.99 -3.09
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Table 1 Continued)

No. Peptide sequence Descripfors Exp MLR ANN

QM Esc MR JLef X JLef X Percent Mef X Percent

10° 10° deviation 10° deviation

61  YKLVVVGACGVKGSALT 0.0202 —-8.99 2189 14.33 13.92 2.88 1495 —-4.36
62  YKLVVVGANGVGKSALT 0.0201 —-9.77 2334 14.36 13.78 4.04 1492 -3.89
63  YKLVVVGARGVGKSALT 0.0267 —9.61 249.0 17.80 16.48 7.40 18.72 -5.16
64  YKLVVVGAVGVGKSALT 0.0202 -10.08 233.9 15.06 13.74 8.77 14.97 0.59
65 YNYMCNSSGMGGMNRRP 0.0182 —-7.43 277.2 14.29 14.13 1.10 15.08 -5.53
66 FIGITEAAANLVPMVATV 0.0055 -—-11.52 248.7 4.73 7.87 —66.33 8.62 —-82.22
67 VPYEPPEVGSVYHHPLQLHV 0.0219 —-12.16 354.2 15.13 14.80 2.17 16.54 -9.32
68 RTHGQSHYRRRHCSRRRLHRIHRRQ 0.0708-15.18 565.2 29.01 34.29 -18.21 28.57 1.52
69 KSSQYIKANSKFIGITEAAANLVPMVATV 0.0182 -17.93 4499 14.21 12.52 11.92 1454 -2.32
70 DRVIEVVQGAYRAIRHIPRRIRQGLERRIHIGPGRAFYTTKN  0.0437 —28.09 788.1 20.83 2213 -6.24 21.80 —4.64
Test set
71 FD 0.0173 -1.48 41.6 13.00 1352 -4.02 12.82 1.41
72 MM 0.0195 -1.66 46.2 13.86 1431 -3.28 14.14 -1.99
73 AAA 0.0221 0.00 17.0 14.96 1556 —4.04 15.83 -5.78
74  RQQ 0.0322 -1.86 68.3 24.00 19.27 19.70 22.13 7.79
75 KKK 0.0703 -1.86 75.2 33.03 33.83 -2.43 31.55 4.49
76  SSQYIK 0.0227 —-4.11 119.2 16.71 15.46 7.46 16.39 1.92
77  YMDGTMSQV 0.0073 -5.46 1484 6.62 9.45 —-42.69 9.04 -36.58
78  ACSGRDRRTEE 0.0316 —4.49 1645 21.91 19.11 12.79 21.50 1.85
79 NSFCMGGMNRR 0.0241 -5.04 179.2 18.30 16.24 11.27 17.47 451
80 AAANLVPMVATV 0.0076 —6.65 150.4 6.15 9.23 -50.01 8.86 —44.14
81 DAEKSDICTDEY 0.0124 -7.32 173.0 9.91 11.05 -11.53 10.81 -9.07
82 GSDCTTIHCNYM 0.0143 -6.50 160.9 1241 11.92 3.96 11.72 5.59
83 PHRERCSDSDGL 0.0295 -5.68 1815 19.33 18.11 6.30 20.34 -5.22
84  TTIHYNYICNSS 0.0145 -8.46 202.8 10.59 11.80 -11.38 1190 -12.41
85 HMTEVRRYPHHER 0.0469 —-8.23 289.7 26.42 24.92 5.67 26.54 -0.44
86  YAEGDVHATSKPARR 0.0338 —-6.32 239.1 21.38 20.04 6.25 22.15 -3.60
87 LAKTCPVRLWVDSTPP 0.0187 —-8.68 2585 15.13 13.77 9.00 14.65 3.20
88 VVRRCPHQRCSDSDGL 0.0311 —-8.48 2443 20.75 18.44 11.12 20.92 -0.82
89  YKLVVVGAAGVGKSALT 0.0204 —-8.99 2246 14.22 14.07 1.09 15.08 —-6.03
90 KQINMWQEVGKAMYAPPISGQIRRIHIGPGRAFYTTKN 0.0288 —24.13 702.2 17.78 16.91 4.92 18.39 -341
Validation set
91 KKKK 0.0737 —-2.48 100.2 33.03 35.17 -6.47 31.88 3.47
92  AAAAA 0.0161 0.00 28.3 12.34 13.36 -8.27 11.40 7.64
93 YGGFM 0.0121 -1.83 87.0 9.53 11.81 -23.89 9.56 -0.35
94  VISNDVCAQV 0.0072 -7.34 127.1 5.83 8.69 —48.99 6.75 -—15.81
95 CRHHRRRHRRGC 0.0710 -5.50 252.7 29.68 3454 -16.38 30.89 —4.06
96 HMTEVRHCPHHER 0.0484 -7.57 251.6 26.41 25.35 4.02 26.36 0.21
97 LAKTCPVRLWVDS 0.0210 -8.15 218.8 10.510 9.91 5.71 16.03 —52.51
98 RTHCQSHYRRRHCSR 0.0560 —7.49 308.0 28.96 28.72 0.84 27.64 4.54
99 EPPEVGSDYHHPLQLHV 0.0238 —10.06 290.1 16.91 15.60 7.77 16.62 1.73
100 KLVVVGAGDVGKSALTI 0.0198 -10.68 218.3 13.69 13.29 2.94 13.76 -0.52
101  TPPPGTRVQQSQHMTEV 0.0184 —-8.44 270.6 14.17 13.86 2.15 14.02 1.08
102  FLTPKKLQCVDLHVISNDVCAQVHPQKVTK 0.0295 —-20.82 494.9 18.68 16.35 12.47 18.65 0.16

a Definitions of descriptors are given in the text.

eters contributing to the peptides electrophoretic mobilities aZ-scale and alpha-helix contefit4,15] A detailed description
of the stepwise multiple linear regression procedure used for
choosing these descriptors is given in our previous pH&ir

[13]:

M:p%—}—eZEs,c—i—mZMR

mass ratio in the form of Offord empirical modé ¢ is the cor-

(1)

The most common method for calculating peptide charges is to

use the Henderson-Hasselbach equdtiéh According to this
whereQ/M?? is a hybrid parameter combining the charge overmethod, the net charge of a peptide at pH 2.5 can be calculated

as the sum of all charged amino acid residues and carboxy- and

rected steric substituent constant and MR is molar refractivityamino-terminals. Each arginine (R), histidine (H), lysine (K) and
These descriptors were chosen from a large set of parametéisterminal contribute a charge of +1; while each aspartic acid
such as effective net charge, molar mass, number of amin@®) (pKa 3.5), glutamic acid (E) (Fa 4.5) and the C-terminal
acid residue, average residue mass, molecular volume, surfaeXa 3.2) contributes a charge f0.091,—0.01 and—0.166 at
area, hydrophobicity, isoelectric point value, strain parameteipH 2.5, respectively. The parametersHfc and MR for each
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Table 2

Specifications of the selected MLR model

Descriptor Notation Coefficient Mean efféct
Charge to size ratio QM 380.088-17.360) 9.845
Corrected steric substituent constant Esc 0.292 ¢0.170) —-1.775
Molecular refractivity MR 0.009+£0.006) 1.514
Constant 7.009 ¢-0.512)

2 Mean effect of a descriptor is the product of its mean and regression coefficient in the MLR model.

amino acid is taken from the referendds,18] > Esc and  to test the utility of the model, we have simulated the theoreti-
>~ MR for each peptide were obtained using an additive modetal peptide maps of the digests of melittin, glucagon and horse
(i.e. these parameters for a peptide is simply the sum of the cogytochromeC polypeptide and proteins (see Secti#).
responding parameters of amino acids included in the peptide). In order to simulate an electropherogram, first the ANN cal-
The calculated values of these parameters for all peptides in treulated electrophoretic mobilities were converted to migration
training, test and validation sets are giveriTable 1 The best times using the same values for the experimental parameters as
MLR model is one that has high correlation coefficieRt &nd  reported by Janini et gJ10]. Values of 37 and 30 cm were used
F-values, low standard deviation and high predictive ability. Thefor the total length of the column and injector-to-detector length,
specifications for the best MLR model (Ed)) are presented in respectively. Also, a running voltage of 8 kV was used for the
Table 2 purpose of this conversion. To simulate the peak of each theo-
retical fragment, it was assumed that the area for each peak is
proportional to the number of peptide bonds. It is shown that at
200 nm, the absorbance of a peptide is largely attributed to the
A detailed description of theory behind artificial neural net- peptlde. bonds while the contribution of amino acids residues
works has been adequately described elsewfE9e22] A can be ignorefR7,28] Forthg sake of convenience, same pgak
three-layer back-propagation network with a sigmoidal transy‘”dth was used for.each S|muI§1ted peak in this work, Wh'_Ch
fer function was designed in the present work. This network i akes the peak height proportional to the number of peptide
written in C++ in our laboratory. The three descriptors appear- onds.
ing in our previous QSMR model were used as input parameters
for the network generation. The signals from the output layeB. Results and discussion
represent the electrophoretic mobilities of the peptides. Such an
ANN may be designed as 3-y-1 net to indicate the number of To inspect the robustness of a model, one should choose a
nodes in input, hidden and output layers, respectively. Genewrery diverse data set consisting of peptides with wide range of
ally, the neural network methodology has several empiricallystructural properties. Therefore, in the present work we have
determined parameters. These include: (1) when to stop trainirgpplied a similar strategy (i.e. using the same structural descrip-
(i.e. the number of iterations or the convergence criterion), (2jors as ANN inputs) to predict the electrophoretic mobilities of a
the number of hidden nodes, and (3) learning rate and momemrore diverse peptide set that included significantly larger, more
tum terms. The values of constructed ANNs parameters wergydrophobic, and highly charged peptides that was obtained
optimized with the procedure that was reported in our previousrom the paper by Janini et 41.2].
works[23-25] The initial weights were chosen randomly. The
program is written in suc_h a way that the randomized weights; ; Multiple linear regression analysis
depend on the number of input, hidden and output nodes. Before

training, the outputandinputs (exceptfor the values ofthe Offord ¢ \1| R calculated values of electrophoretic mobilities of
model) were normalized between 0 and 1. To evaluate the pety hentides are shown ifable 1 Also, the regression results
formance of the ANN, _stgndard error of calibration (SEC) andfor the selected MLR model are presentedible 2 It can be
standard error of prediction (SEP) were ug2€]. The num-  qo0n that the most important descriptor is the hybrid parameter
ber of neurons of the hidden layer with the minimum value of ¢ charge-to-size ratio (Offord model). This descriptor shows a
SEC was selected as the optimum number. Learning rate anglean, effect of 9.845, which is the largest among the parameters
momentum were optimized in a similar way. We have used the,, o aring in the model. This is in agreement with our previous
validation set to examine the validity of the ANN model. work and confirms the conclusion reached by many researchers

[4,11-13] However, a major problem with this parameter is the
2.4. Modeling of peptide maps accuracy of the calculated charge, which is controversial in the

literature[29-31] Although Rickard et al. have claimed that at

The authors believe that the mostimportant aim of the preseqtH 2.5 a good agreement is expected between the calculated

work was investigating the application of the generated modehnd actual charge, this is not the case for hydrophobic or highly
in simulation of the peptide maps of protein digests. Thereforegcharged peptidg80]. At this pH, for hydrophobic peptides vari-

2.3. Artificial neural networks model
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40.0 Table 3
Architecture and specifications of the ANN model
A test : .
e A Number of nodes in the input layer 3
m validation Number of nodes in the hidden layer 3
Number of nodes in the output layer 1
Number of iterations 35000
Learning rate 0.7
20.0 4 Momentum 0.9
3.2. Artificial neural networks analysis
[
zm . . .
& R'=0.830 The most important advantage of the artificial neural net-
i works over regression analyses is their ability to allow for

0.0 20.0 40.0 the_flexible_ mapping of the se_lect_eq features by manipulating
their functional dependence implicitly. Developing networks
Fig. 1. Plot of the MLR calculated electrophoretic mobilities against the expergnd Comparing them with the MLR models provides us the
imental values of peptide mobility for the test and validation sets. Opportunity to investigate the nonlinear characteristics of the
dependence of electrophoretic mobilities of peptides on struc-

o o ) o tural descriptors. In order to have a meaningful comparison, the
ations in the ionization constantsipandE might be significant,  variables for the linear and nonlinear treatments should be the

while for highly charged peptides the calculated charges mighgame. Therefore, the three descriptors appearing in the MLR
deviate from the actual one due to mutual electrostatic interagnodel have been considered as the inputs for generating the net-
tions of charged groups in proximity of each other. Cifuentes angyorks. After optimizing the parameters needed for constructing
Poppe have presented a model for predictikig yalues of pep-  ANNs, a neural network with architecture of 3-3-1 was obtained,
tides considering the mutual electrostatic interaction of chargeghich its specifications are given Fable 3 We used the test
groups, but their model is empirical in nature and time con-et consisting of twenty peptides to optimize the learning iter-
suming[31]. Since the charge-to-mass ratio parameter plays thgtion size and avoid overtraining. To evaluate the network, the
major role in the mechanism of electrophoretic mobilities, theg|ectrophoretic mobilities of peptides included in the validation
MLR calculated mobilities for hydrophobic and highly charged get were predicted and are showrTable 1 Fig. 2 shows the
peptides might deviate considerably from the experimental valp|ot of the ANN predicted versus the experimental values of
ues. Inspection ofable 1shows that this is true for most of the electrophoretic mobilities for the test and validation sets.
the highly charged or hydrophobic peptides. The peptides 48ne agreement between the predicted and observed mobilities
68 and 70 with charges of 11.83, 15.83 and 12.72, respectivelyising the ANN modelingK2 = 0.970) was considerably higher
are the most highly charged peptidesTable 1 The MLR cal-  han that with the MLRE2 = 0.930) for the same set of peptides
culated values for these peptides show a deviatior bT.51,  gescriptors. Inspection of the results giveTable 1shows that
—18.21 and-6.24%, respectively. On the other hand, among thehjs improvement is mostly due to a better ability of the nonlin-
peptides listed ifable 1peptides 2, 30 and 94 show the lowest ear model in predicting the electrophoretic mobilities of highly
charges of 0.65, 0.73 and 0.74, respectively. The MLR calcugharged, low charged or hydrophobic peptides. A detailed dis-

—26.33,—43.70 and-48.99%, respectively. Jean Luc et al. have

reported a hydrophobic parameter, which can be considered as
a measure for the hydrophobicity of peptid88]. They have
obtained this parameter from the partitioning\eacetyl-amino

acid amides in octanol/water systgd2]. Based on this parame-

ter, peptides 66, 90 and 102Tdble lare the most hydrophobic
ones with deviations 0f66.33, 4.92 and 12.47%, respectively,

in their MLR calculated valuegrig. 1 shows the correlation
between the MLR calculated and the experimental values of the 20.0 +
electrophoretic mobilities of peptides included in the test and
validation sets. The correlation & =0.930 indicates a rea-
sonable agreement between these values and also demonstrates
some improvements over those obtained using the Offord model.
These improvements can be attributed to the inclusion of the
parameters of corrected steric constant and molecular refractiv- 0.0 .
ity into the MLR model. However, this model shows weakness 0.0 20.0 40.0

In predlctlng the eIECtrOphorenc m_Ob”'t'eS of hlghly Charged’Fig. 2. Plot of the ANN calculated electrophoretic mobilities against the exper-
low charged and hydrophobic peptides. imental values for the test and validation sets.

40.0

A test

m validation

R%=0.970
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Table 4

Comparison of the statistics for the MLR and ANN models

Model R‘%’raining R%est R\zlalidation SErraining SErest SBualidation F

MLR 0.903 0.907 0.949 1.89 1.77 0.91 872
ANN 0.959 0.960 0.993 1.04 0.96 0.65 3153

shows a plot of the residuals of ANN predicted values of theupon the accurate measurement of the electrophoretic mobilities
electrophoretic mobilities against the experimental values. Thef a large number of peptides with a wide range of charge and
propagation of the residuals on both sides of zero indicates thatolar mass. However, calculations of different functions in their
no systematic error exists in the development of the neural netmodel depend entirely on the data set and changing the basis set

work.

requires new equations for these functions. The ANN model has

Table 4lists more detailed statistics about the predictiveovercome the problem of robustness by incorporating three gen-
power of the MLR and ANN models. It can be seen from thiseral descriptors as its inputs. To demonstrate the predictive abil-
table that R values for the ANN model are considerably higher ity of the ANN model, we have highlighted the results for some

than those for the MLR model for all three, training, test and val

-of the highly charged and hydrophobic peptide3ale 5 For

idation sets. Also, the ANN predicted values show much lowethe sake of comparison the Offord, multi-variadl2] and MLR
standard errors as compared with those of the MLR model. Thealculated values for the electrophoretic mobilities together with

ANN model also reveals a higher value for thietatistic. These

some statistics are also included in this table. The data included

results clearly reconfirm our earlier conclusion about the nonlinin Table Srepresent peptides with different sizes and were cho-
ear behavior of the electrophoretic mobility of peptides, whichsen based on a charge larger than 4 and a hydrophobic parameter

is incorporated in the ANN modeling.

3.3. Prediction of highly charged and hydrophobic peptides

Despite the voluminous amount of attempt reported for cal
culating the electrophoretic mobilities of peptidgs-12,31]
there is still no robust model to be able to predict accuratel
this parameter for all categories of peptides, especially high
charged and hydrophobic peptides. Notable exceptions to t

previous works are a multi-variable computer model presente

by Janini and coworkef&1,12]and our recent ANN modgl 3].
Janini and coworkers, based on a data set consisted of the el

trophoretic mobilities of 58 peptides that varied in size from 2 to - - : ) A
oflydrophobic peptides. A summary of these inconsistencies is

39 amino acids examined the existing empirical models that ¢

relates electrophoretic mobility with physical parameters. The

larger than 3. The results of this table clearly demonstrate a sig-
nificant improvement for the multi-variable and ANN models
compared with the MLR and the Offord models. Although there
is no significant differences between tRé values of multi-
|variable and ANN models, the later shows a lower standard error
(SE) and relative standard deviation (RSD). It can be seen from
);I'able 5that the ANN model shows a RSD of 4.43% which
|)i;3 much lower than those of the Offord and MLR models. It
mhould be noted that we have developed this model using the
gxperimental mobilities which demonstrate an average RSD of
2.34% themselves. Despite the improvements, for both models
Several inconsistencies exist between the sequences of the real
and predicted electrophoretic mobilities of highly charged and

>;hown inFig. 4. Peptides 10, 12 and 19 show an incorrect order

reached to the conclusion that the charge-to-size parameter (pfrthe ANN model, while the order of electrophoretic mobilities

Offord offers the best fit to their experimental d§t8]. How-
ever, inspection of their results revealed a systematic deviati

for small peptides with large positive charge, such as the lysin

for peptides 9, 13, 19 and 22 is not correct for the multi-variable

ofpodel. Comparison of the resultsTable Sreveals superiority

g)r ANN model over the MLR and the Offord model. TR

homologous withk = 2-5. To address this deficiency, Janini et al.
presented a multi-variable model that takes into account other

physical properties that were neglected by the Offord model =
[11,12] However, the success of their model was dependent ‘::”:’;jm
! A A
\ ! R
o 0‘&1 0"0 00 0‘§<’> o o o o - © o
o re A o i ""
0.00 @ é‘,‘u L & 4test ©00000® o 60 O 0 6 o 00 o
-] A A 4 o validation 6.7 1sJ 13,1610,14 17,24 1922 23 3 2 1 45 a
N o g i :%Lm 18,20
6.00 60 80 100 120 140 160 180 200 220
0.0 20.0 40.0 Time (min)

Fig. 3. Plot of the residuals vs. the experimental values of peptide mobility forFig. 4. Sequences of the real and predicted electrophoretic mobilities of highly

the test and validation sets.

charged and hydrophobic peptides using multi-variable and ANN models.
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Table 5
Comparison of different models for highly charged and hydrophobic peptides
No. Peptide Exp Offord Multi-vd MLR ANN
Hef X 10P pefx 10 pesx 10°P  pesx 10°P  Percent  pefx 10°  Percent
deviation deviation
1 FP 12.81 12.98 13.18 13.99 -9.21 13.06 —-1.95
2 FL?2 13.33 13.82 13.91 14.30 —7.28 13.51 -1.35
3 LL? 14.55 14.85 14.58 14.73 -1.24 14.61 -0.41
4 Wwa 11.05 11.52 10.91 13.23 —-19.73 12.80 —15.84
5 FFF 10.38 10.59 10.76 12.48 —-20.23 11.92 —14.84
6 KKKK P 33.03 45.34 33.53 35.17 —6.48 31.88 3.48
7 KKKKK P 33.03 47.26 33.18 36.45 —10.35 31.76 3.84
8 YGGFL2 9.75 9.62 9.70 11.76  —20.62 10.58 —-8.51
9 ACHGRDRRP 26.54 28.80 28.54 24.39 8.10 2690 -1.36
10 VVRRYPHHE 27.38 27.40 25.46 23.24 15.12 25.55 6.68
11 CRHRRRHRRGE 29.68 41.78 29.75 33.25 —-12.03 30.72 —3.50
12 CRHHRRRHRRGE 29.68 43.74 29.61 3454 -16.37 30.89 —4.08
13 HMTEVRRYPHHER 26.42 30.32 27.11 24.92 5.68 26.54 —0.45
14 HMTEVRHCPHHER 26.41 29.55 25.07 25.35 4.01 26.36 0.19
15 HRSCRRRKRRSCRHR 30.27 45.09 3141 3557 —-17.51 30.68 -1.35
16 RTHCQSHYRRRHCSR 28.96 34.99 26.39 28.72 0.83 27.64 4.56
17 YAEGDVHATSKPARR 21.38 22.10 21.94 20.04 6.27 2215 -3.60
18 VVRRCPHQRCSDSDGL 20.75 20.54 19.22 18.44 11.13 2092 -0.82
19 DGLAPPQHRIRVEGNLR 18.98 20.21 20.49 18.10 4.64 2040 -7.48
20 NHQLLSPAKTGWRIFHP 19.42 20.14 18.85 18.40 5.25 20.28 —-4.43
21 RTHGQSHYRRRHCSRRRLHRIHRRQ 29.01 43.60 28.32 3429 -18.20 28.57 1.52
22 FLTPKKLQCVDLHVISNDVCAQVHPQKVTK® 18.68 19.59 19.83 16.35 12.47 18.65 0.16
23 KQIINMWQEVGKAMYAPPISGQIRRIHIGPGRAFYTTKN 17.78 19.21 17.71 16.91 4.89 18.39 —3.43
24 DRVIEVVQGAYRAIRHIPRRIRQGLERRIHIGPGRAFYTTKN 20.83 27.85 21.79 22.13 —6.24 21.80 —4.66
R? 0.91 0.98 0.91 0.99
Standard error 3.67 1.09 2.60 0.80
RSD 3341 4.88 12.17 4.43

@ Hydrophobic peptide.

b Highly-charged peptide.

¢ Hydrophobic and highly-charged peptide.

d Multi-variable model from Janini et al. woi 2].

value of 0.990 for the ANN should be compared with a valueof peptide maps. Reaching this goal means that one can eas-
of 0.910 for the MLR and Offord models. Also, SE and RSDily identify unknown proteins by submitting the experimental
values of 0.80 and 4.43%, respectively, for the ANN modelmaps to the database and searching for the closest match in
should be compared with 2.60, 3.67 and 12.17 and 33.41% fderms of the migration times of the major peaks. To explore
the MLR and Offord models, respectively. Large deviations ofthe utility of the ANN model in simulation of the CZE pep-
—17.51,-18.21 and—6.24% for the MLR calculated values tide maps, the profiles for the endoproteinase Lys-C digests of a
of the most highly charged peptides 48, 68 and 70, respectivelpeptide sequencing standard, melittin GIGAVLKVLTTGLPAL-
should be compared with the values-ef.34, 1.52 and-4.64%  ISWIKRKRQQ, and two more complicated proteins namely
for their ANN calculated counterparts. Also, deviations of 4.92glucagon and horse cytochroniewere studied in this work.
and 12.4% for the MLR calculated electrophoretic mobilities ofChoosing these peptides were based on possibility of compar-
highly hydrophobic peptides of 90 and 102, respectively, shoulison of the ANN simulated maps with the experimental and
be compared with the values 683.41 and 0.16% for their ANN  multi-variable simulated ones.
counterparts. A notable exception is the hydrophobic peptide Fig. 5 demonstrates the experimental and ANN simulated
FIGITEAAANLVPMVATYV ( Table ) with a large deviation of maps forthe endoproteinase Lys-C digest of the peptide sequenc-
—66.33 and-82.22% for the MLR and ANN calculated values, ing standard of melittin. The correct migration order of peptides
respectively. Although, we are uncertain about the origin of thesand corresponding retention times agrees fairly with the exper-
deviations, they could be due to the experimental uncertainty. imental electropherogram. However, multi-variable results also
show a correct order and accurate retention tifhas
3.4. Simulation of peptide maps of protein digests Next, we have considered glucagon, a polypeptide with 29
amino acid residues. This polypeptide can be used as a control
The long-range goal of developing theoretical models, whicHor proteolytic digestion, sequencing and amino acid analysis.
can accurately predict the CZE parameters, such as retentiddanini and coworkers digested this protein with endoproteinase
time or electrophoretic mobility, is the construction of a databas&lu-C with characteristic cleavage at the C-terminal of aspar-
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3 ANN simulated
2 ANN simulated map 4 3
| 3
1 2 4
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< 1] Experimental map
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Fig. 5. Experimental and ANN simulated maps for the endoproteinase Lys-C » Experimental
digest of melittin. §
>
©

tic acid (D) and glutamic acid (E) residues. Therefore, after a =
complete digestion, four fragments are expected for this protein. <
These fragments are listed Table 6 Also, the values for the g
three descriptors together with the calculated MLR and ANN 3
values for the electrophoretic mobilities of glucagon fragments §
are summarized in this table. The ANN calculated mobilities < L
were converted to the migration times and simulated electro- : : : : | :
pherogram is shown iRig. 6. For the purpose of comparison, 10 15 20 o5 30 35

the experimental and simulated electropherograms reported by
Janini et al., are also shown in this figure. Inspectiofrigf 6
reveals an excellent matching between the line positions and
a reasonable agreement between the relative heights of the
experimental and simulated peaks. It seems that both mod-
els of multi-variable and ANN overestimate the mobility for
the FVQWLMNT fragment and therefore, a smaller value for
the corresponding migration time. Validity of this conclusion

Table 6
Descriptor values together with MLR and ANN calculated mobilities of theoret-
ical fragments of Lys-C digest of cytochromieand Glu-C digest of Glucagon

Multi-variable simulated

1 Ll 1 T 1 I
10 15 20 25 30 35

Time (min)

Fig. 6. Experimental, ANN and multi-variable simulated electropherogram of

No. Peptide sequence Descriptors MLR  ANN
QM Esc MR Mef X Hef X
100 10°
Glucagon digest
1 SRRAQD 0.0338 —2.92 103.6 19.88 22.05
2 YSKYLD 0.0204 —4.32 127.1 14.60 1441
3 HSQGTFTSD 0.0177—-4.18 123.6 1356 12.75
4 FVQWLMNT 0.0081 —-6.45 1729 9.69 7.90
CytochromeC digest
5 GK 0.0530 —0.42 26.08 27.27 29.52
6 HK 0.0657 —1.28 48.84 32.02 31.39
7 NK 0.0450 —1.40 395 24.03 27.27
8 GGK 0.0450 —0.22 27.11 24.27 27.29
9 ATNE 0.0144 —1.93 48.2 1232 10.18
10 GDVEK 0.0259 —2.91 68.8 16.60 17.67
11 GITWK 0.0257 —-3.22 97.3 16.66 17.61
12 IFVQK 0.0249 —4.64 108.7 16.03 17.00
13 YIPGTK 0.0238 —3.26 103.3 1597 16.48
14 MIFAGIK 0.0217 -5.17 1240 14.79 15.02
15 CAQCHTVEK 0.0279 —4.14 1444 17.64 18.86
16 TEREDLIAYLK 0.0223 —-8.58 207.2 14.74 1551
17 EETLMEYLENPK 0.0137 —8.42 224.3 11.68 10.92
18  TGPNLHGLFGRK 0.0322-5.79 1914 19.20 20.81
19 TGQAPGFTYTDANK 0.0135-5.39 194.8 1222 11.11

glucagons.

depends upon the accuracy of assignments of the peaks. How-
ever, one should consider the possibility of several shortcomings
in experiment such as imperfect enzymatic digestion, impurity
and autolysis of the endoproteinase.

Finally, we studied the relatively complex protein of horse
cytochromeC with 104 amino acid residues. This protein also
was digested with endoproteinase Lys-C with specificity of
cleavage at the C-terminal of lysine residy&g]. The theo-
retical fragments of this protein together with the values of the
descriptors and corresponding MLR and ANN calculated mobil-
ities are demonstrated fable 6 Fig. 7shows the experimental
and ANN simulated electropherogram of cytochrofieFor
the sake of comparison, the simulated electropherogram of this
protein obtained by Janini et al. is also included in this table.
Inspection ofFig. 7 shows that the experimental electrophero-
gram of cytochrome” have a striking similarity to the ANN
simulated electropherogram. Almost each simulated peak has a
counterpart in the experimental electropherogram with a good
agreement between their migration times. However, Janini et al.
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ANN simulated charge-over-mass ratio @/M23, corrected steric substituent
12-13 19 constant and molar refractivity are very useful in predicting the
17 electrophoretic mobilities of different categories of peptides. (2)

16
1% To investigate the robustness of the model, a more diverse data
set obtained in different experimental conditions was needed.
9 To fulfill this, a more diverse data set consisted of 102 pep-

LJ tides was chosen in this work. The robustness of the neural

|- network model was exhibited by accurate ANN calculated elec-

25 trophoretic mobilities of all categories of peptides, obtained in
different experimental conditions. Also, simulating the endo-
proteinase digests of melittin, glucagon and horse cytochrome
C maps showed the utility of the model in simulation of the
CZE peptide maps. (3) A research is under way in our group to
explore the use of a new series of sequence-descriptors. The pre-

liminary results are promising. Success in this step improves the
capability of the model in simulating proteins maps consisted of
isomeric peptides.
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