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Abstract

Recently, we have developed an artificial neural network model, which was able to predict accurately the electrophoretic mobilities of relatively
small peptides. To examine the robustness of this methodology, a 3-3-1 back-propagation artificial neural network (BP-ANN) model was developed
using the same inputs as the previous model, which were the Offord’s charge over mass term (Q/M2/3), corrected steric substituent constant (Es,c)
and molar refractivity (MR). The data set consisted of 102 peptides with a larger range of size than that of our earlier report – up to 42 amino
acid residues as compared to 13 amino acids in the initial study – that also included highly charged and hydrophobic peptides. The entire data
set was obtained from the published result by Janini and co-workers. The results of this model are compared with those obtained using multiple
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inear regressions (MLR) model developed in this work and the multi-variable model released by Janini et al. Better predictive abi
P-ANN model over the MLR indicates the non-linear characteristics of the electrophoretic mobility of peptides. The present model exh

obustness than the MLR models in predicting CZE mobilities of a diverse data set at different experimental conditions. To explore th
he ANN model in simulation of the CZE peptide maps, the profiles for the endoproteinase digests of melittin, glucagon and horse cytC
s studied in the present work.
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. Introduction

Peptide mapping is a widely used technique for characteri-
ation of protein structure that involves digestion of a protein
hrough enzymatic or chemical means and subsequent separa-
ion and detection of the resultant peptide mixture. The peptide
aps serve as “fingerprints” that can be applied to rapid protein

dentification and the detection of post-translational modifica-
ions.

Capillary liquid chromatography (combined with MS/MS) is
urrently one of the most commonly used techniques for peptide
apping[1,2]. While this method provides excellent resolution,

t is often slow and generally consumes relatively large quantities
f peptides. Capillary zone electrophoresis (CZE) has received
onsiderable attention as peptide mapping method because of
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its high speed and high resolution for peptide analysis and
its small sample size requirement. Among other advant
CZE can be multiplexed and automated so that many ex
ments can be performed in parallel. However, electropho
peptide profiles obtained are sometimes very complex owi
the complicated nature of the samples. Generally, CE sepa
of peptides is more successful than proteins because the s
molecules tend to interact less compared with the capillary

The key parameter for separation of peptides, especia
low ionic strength buffers, is their electrophoretic mobilit
This parameter can be converted to migration time and a
electropherogram can be simulated using a Gaussian fun
Therefore, calculation/prediction of this parameter is very us
in peptide mapping studies.

Several empirical models, based on Stoke’s law, have
developed for the prediction of electrophoretic mobilities f
the charge to size ratio[3–9]. The accuracy of these pred
tive models are limited due to three factors: (1) the gen
assumption that the relationship between mobility and ch
to size ratio follows a linear trend for all peptides can be i
curate; (2) the lack of accurate pKa values for the ionizabl
021-9673/$ – see front matter © 2005 Published by Elsevier B.V.
oi:10.1016/j.chroma.2005.09.043
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amino acids chains and the end groups in peptides result in
inaccurate calculation of peptide charges and (3) molar mass is
often used to describe peptide size, however, the exact effect of
molar mass on electrophoretic mobility is yet to be determined.
The main difference between the various reported empirical
models lies in the dependence of mobility on molar mass of
peptides.

Janini et al. have obtained the electrophoretic mobility of 58
peptides ranging in size from 2 to 39 amino acids and charge
from 0.65 to 7.82[10]. Based on this data set, they concluded
that the Offord model is the best predictor of mobility, but it fails
when applied to hydrophobic and highly charged peptides. These
researchers also showed that peptide electrophoretic mobil-
ity cannot be successfully predicted with reasonable degree
of accuracy for all different categories of peptides by rely-
ing on two-parameter models, namely charge (Q) and size
dependence—size is usually expressed in terms of the number
of amino acids residues,N, or molar mass,M [10].

In two other efforts, Janini and coworkers have developed
a multi-variable computer model, based on a closest-neighbor
algorithm for the prediction of the electrophoretic mobilities
of peptides[11,12]. A computer algorithm was developed that
matches the physical parameters of unknown peptides to their
closest-neighbor in the peptide set for more accurate estimation
of their mobilities. Their model is based on assumption that the
electrophoretic mobilities can be calculated by a product of three
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multivariate models is their applications as a tool in the con-
struction of a data base of peptide maps. A successful model
should be capable of providing accurate prediction of migration
behavior in CZE for a wide range of compounds and at var-
ious experimental conditions. Therefore, in the present work,
a data set that has been reported by Janini et al. was chosen
[12].

2. Experimental

2.1. Data set

Development of the multiple linear regression (MLR) and
artificial neural networks (ANN) in the present work relies on a
data set taken from reference[12]. This data set (Table 1) con-
sists of 102 peptides ranging in size from 2 to 42 amino acid
residues, which varies in charge from 0.65 to 16. The data set
includes 18 dipeptides, 32 peptides with five or less amino acid
residues and 72 peptides with six or more amino acid residues.
The electrophoretic mobilities of these peptides have been deter-
mined in CZE using a 50 mM phosphate buffer at pH 2.5, 22◦C
and a capillary coated with 10% polyacrylamide. It should be
noted that these experimental conditions are different from those
we used for the development of the ANN model in our previous
work [13]. According to the authors, the use of polyacrylamide
coated capillary provided stability and migration time repro-
d
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unctions representing peptide charge, length and width[12]. In
his model, the number of amino acid residues was consid
s a measure of peptide length and the width of a prote
ummation of the residue widths of its amino acids. The res
idth for each amino acid was assumed to be proportion

he relative mass of the residue, being 1 for glycine and 13
ryptophane. Although, these researchers have obtained
ent results, but the main drawback of their model is tha
unctions appearing in the model are data dependent. In
ords, their model is based on a closest-neighbor algorithm

s not robust.
We have recently developed an artificial neural netw

odel for the following three objectives: (1) to explore
inear/non-linear characteristics of the electrophoretic m
ties of peptides; (2) to assess the predictive abilities of
arious reported models; and (3) to investigate the effec
ther structural factors, in addition to charge and size, on

rophoretic mobility[13]. The ANN model showed a significa
mprovement in the predictive ability over the empirical m
ls and the multiple linear regression (MLR) treatment[13].
his improvement was especially pronounced for the pep
f higher charges that contain basic amino acids arginine,
ine and lysine. This model was based on a data set cons
f the electrophoretic mobilities for 125 peptides ranging in
etween 2 and 14 amino acids.

The main aims of the present work, in addition to the ab
entioned objectives, were: (1) evaluating the robustness
enerated model, (2) comparison of the model with the m
ariable model developed by Janini et al., and (3) investiga
he utility of the model in simulation of the maps of some p
ides. However, long range goal of the development of
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ucibility throughout the experiments to within 1% RSD[12].
owever, in order to determine the uncertainty of the exp
ental electrophoretic mobilities, Janini et al. have meas

he mobilities of six peptides and the reference standard
wo independent columns with different buffer preparation
eparate days. They obtained an average RSD of 2.34%
he measured electrophoretic mobilities that had a rang
.73× 10−5 cm2 s−1 V−1 (for FIGITEAAANLVPMVATV) to
3.03× 10−5 cm2 s−1 V−1 (for KKKKK).

To apply the ANN modeling for the Janini et al. results,
ata set was randomly divided into three groups of training
nd validation sets consisting of 70, 20 and 12 peptides, re

ively. The training set was used for the model generation.
est set plays a different role in the cases of the MLR and
NN models. For the ANN model, this set was used for e
topping to optimize learning iteration size and avoid overtr
ng. The validation set was used to assess the accuracy
NN predictions. On the other hand, in the case of the M
odel, the test set combined with the validation set was us

valuate the model. As can be seen fromTable 1, the peptide
n the test and validation sets were chosen in a way that
uately represents the training set in terms of size, charg
omposition.

.2. Regression analysis

The main aim of the present work was to investigate
obustness of our previous quantitative structure–mobility
ionships (QSMR) model. Therefore, as first step for develo
he regression model, the three descriptors appearing i
revious QSMR models were chosen as the most suitable p
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Table 1
Experimental and calculated values of electrophoretic mobilities using MLR and ANN models together with the values of the descriptors

No. Peptide sequence Descriptorsa Exp MLR ANN

QM Es,c MR µef ×
105

µef ×
105

Percent
deviation

µef ×
105

Percent
deviation

Training set
1 AA 0.0283 0.00 11.3 18.77 17.85 4.91 19.84 −5.68
2 DD 0.0165 −1.56 23.2 10.31 13.02 −26.33 11.92 −15.58
3 EE 0.0192 −1.24 32.5 12.52 14.22 −13.55 13.58 −8.46
4 FA 0.0218 −0.70 35.7 14.86 15.40 −3.63 15.20 −2.29
5 FF 0.0181 −1.40 60.0 12.81 13.99 −9.25 13.06 −1.95
6 FG 0.0227 −0.50 31.0 15.16 15.76 −3.98 15.57 −2.69
7 FL 0.0196 −1.94 49.6 13.33 14.30 −7.26 13.51 −1.35
8 FV 0.0202 −1.79 45.0 13.90 14.56 −4.77 13.89 0.05
9 GG 0.0321 0.40 2.1 21.70 19.36 10.79 21.70 0.00

10 HG 0.0515 −0.46 24.8 27.04 26.67 1.36 29.35 −8.53
11 LL 0.0213 −2.48 39.2 14.55 14.73 −1.21 14.61 −0.43
12 PG 0.0269 0.20 15.0 18.43 17.43 5.41 18.83 −2.15
13 RK 0.0629 −1.24 55.1 32.00 31.02 3.05 30.98 3.17
14 VV 0.0231 −2.18 29.9 15.39 15.42 −0.20 16.17 −5.08
15 WW 0.0156 −1.32 79.6 11.05 13.23 −19.77 12.80 −15.84
16 YY 0.0170 −1.40 63.7 12.10 13.59 −12.34 13.29 −9.81
17 FFF 0.0140 −2.10 90.0 10.38 12.48 −20.28 11.92 −14.80
18 SSS 0.0195 −0.84 35.5 13.22 14.48 −9.55 14.34 −8.44
19 AAAA 0.0185 0.00 22.6 13.87 14.24 −2.64 13.72 1.10
20 ANSK 0.0328 −1.68 57.0 20.91 19.46 6.93 22.53 −7.76
21 HMTE 0.0283 −2.64 75.0 18.91 17.64 6.70 19.73 −4.34
22 PARR 0.0451 −1.24 79.7 27.65 24.46 11.55 27.43 0.78
23 KKKKK 0.0770 −3.10 125.3 33.03 36.45 −10.37 31.76 3.86
24 RPPGF 0.0266 −1.12 89.0 18.36 17.55 4.42 18.72 −1.95
25 YGGFL 0.0123 −2.24 83.5 9.75 11.76 −20.57 10.58 −8.49
26 GIGAVLK 0.0243 −4.16 86.9 15.50 15.76 −1.67 16.69 −7.66
27 AAGIGILTV 0.0096 −5.68 98.9 6.50 9.83 −51.20 8.78 −35.00
28 ACHGRDRRT 0.0453 −3.63 144.0 26.54 24.39 8.08 26.90 −1.37
29 AFLPWHRLF 0.0253 −5.82 212.5 16.55 16.73 −1.09 17.53 −5.93
30 MLDLQPETT 0.0071 −6.39 146.8 6.33 9.10 −43.70 8.36 −32.11
31 RPPGFSPFR 0.0273 −2.72 174.8 19.71 18.07 8.35 18.47 6.30
32 VLQELNVTV 0.0082 −8.30 145.7 6.97 8.93 −28.10 8.14 −16.80
33 VVRRYPHHE 0.0429 −6.06 199.6 27.38 23.24 15.10 25.55 6.70
34 YLSGADLNL 0.0076 −6.06 135.1 6.23 9.28 −49.00 8.39 −34.67
35 KLVVVGAAGV 0.0195 −5.82 117.8 14.10 13.72 2.67 13.32 5.55
36 KLVVVGADGV 0.0180 −6.60 123.7 13.13 12.96 1.29 12.52 4.67
37 ACLGRDRRTEE 0.0312 −5.45 172.3 20.97 18.73 10.66 21.16 −0.88
38 CRHRRRHRRGC 0.0676 −4.84 228.9 29.68 33.25 −12.04 30.72 −3.52
39 LLGRNSFEMRV 0.0234 −7.82 210.9 17.02 15.44 9.31 17.22 −1.18
40 RPKPQQFFGLM 0.0232 −5.75 225.0 16.98 16.07 5.34 17.77 −4.64
41 YAEGDVHATSK 0.0245 −5.08 159.4 17.40 16.20 6.89 18.51 −6.37
42 ACPGKDRRTGGGN 0.0316 −3.15 146.7 19.11 19.36 −1.28 22.64 −18.49
43 ACPGTDRRTGGGN 0.0235 −3.06 133.5 15.08 16.18 −7.32 16.56 −9.84
44 ACPGRNRRTEEENL 0.0273 −6.85 219.8 19.40 17.26 11.03 20.01 −3.14
45 MGGMNWRPILTIIT 0.0134 −10.45 248.6 10.20 11.17 −9.46 12.08 −18.47
46 SPALNKMFCELAKT 0.0211 −7.46 222.0 15.71 14.73 6.25 16.32 −3.90
47 VLTTGLPALISWIK 0.0139 −10.45 233.9 10.50 11.24 −7.07 11.83 −12.63
48 HRSCRRRKRRSCRHR 0.0733 −7.46 336.7 30.27 35.57 −17.51 30.68 −1.34
49 YSPALNKMCCQLAKT 0.0201 −7.46 226.7 14.90 14.41 3.27 15.38 −3.23
50 IITLEDSSNLLGRNSF 0.0118 −12.39 263.1 11.33 10.12 10.68 10.50 7.36
51 LAPPQHHLIQVGNLRV 0.0260 −11.27 273.2 15.01 15.92 −6.07 18.07 −20.40
52 LDDRNTFRRSVVVPYE 0.0232 −11.54 307.9 18.30 15.08 17.57 16.53 9.66
53 PPPGTRVRVMAIKQSQ 0.0262 −8.33 268.2 18.20 16.84 7.47 18.26 −0.34
54 TYSPALNRMFCQLAKT 0.0188 −8.69 273.5 14.77 13.97 5.44 14.66 0.74
55 DGLAPPQHRIRVEGNLR 0.0305 −10.10 284.7 18.98 18.10 4.65 20.40 −7.47
56 KSSQYIKANSKFIGITE 0.0248 −11.28 299.5 17.05 15.70 7.94 17.48 −2.53
57 LGRNSFEVCVCACPGRD 0.0183 −7.42 215.4 13.66 13.63 0.21 14.19 −3.88
58 NHQLLSPAKTGWRIFHP 0.0304 −10.02 323.1 19.42 18.40 5.24 20.28 −4.41
59 NTFRHSVVEPYEPPEVG 0.0179 −9.20 290.2 13.55 13.61 −0.43 14.52 −7.13
60 SSCMGGMNQRPILTIIT 0.0123 −10.97 251.5 10.66 10.62 0.36 10.99 −3.09
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Table 1 (Continued )

No. Peptide sequence Descriptorsa Exp MLR ANN

QM Es,c MR µef ×
105

µef ×
105

Percent
deviation

µef ×
105

Percent
deviation

61 YKLVVVGACGVKGSALT 0.0202 −8.99 218.9 14.33 13.92 2.88 14.95 −4.36
62 YKLVVVGANGVGKSALT 0.0201 −9.77 233.4 14.36 13.78 4.04 14.92 −3.89
63 YKLVVVGARGVGKSALT 0.0267 −9.61 249.0 17.80 16.48 7.40 18.72 −5.16
64 YKLVVVGAVGVGKSALT 0.0202 −10.08 233.9 15.06 13.74 8.77 14.97 0.59
65 YNYMCNSSGMGGMNRRP 0.0182 −7.43 277.2 14.29 14.13 1.10 15.08 −5.53
66 FIGITEAAANLVPMVATV 0.0055 −11.52 248.7 4.73 7.87 −66.33 8.62 −82.22
67 VPYEPPEVGSVYHHPLQLHV 0.0219 −12.16 354.2 15.13 14.80 2.17 16.54 −9.32
68 RTHGQSHYRRRHCSRRRLHRIHRRQ 0.0708−15.18 565.2 29.01 34.29 −18.21 28.57 1.52
69 KSSQYIKANSKFIGITEAAANLVPMVATV 0.0182 −17.93 449.9 14.21 12.52 11.92 14.54 −2.32
70 DRVIEVVQGAYRAIRHIPRRIRQGLERRIHIGPGRAFYTTKN 0.0437 −28.09 788.1 20.83 22.13 −6.24 21.80 −4.64

Test set
71 FD 0.0173 −1.48 41.6 13.00 13.52 −4.02 12.82 1.41
72 MM 0.0195 −1.66 46.2 13.86 14.31 −3.28 14.14 −1.99
73 AAA 0.0221 0.00 17.0 14.96 15.56 −4.04 15.83 −5.78
74 RQQ 0.0322 −1.86 68.3 24.00 19.27 19.70 22.13 7.79
75 KKK 0.0703 −1.86 75.2 33.03 33.83 −2.43 31.55 4.49
76 SSQYIK 0.0227 −4.11 119.2 16.71 15.46 7.46 16.39 1.92
77 YMDGTMSQV 0.0073 −5.46 148.4 6.62 9.45 −42.69 9.04 −36.58
78 ACSGRDRRTEE 0.0316 −4.49 164.5 21.91 19.11 12.79 21.50 1.85
79 NSFCMGGMNRR 0.0241 −5.04 179.2 18.30 16.24 11.27 17.47 4.51
80 AAANLVPMVATV 0.0076 −6.65 150.4 6.15 9.23 −50.01 8.86 −44.14
81 DAEKSDICTDEY 0.0124 −7.32 173.0 9.91 11.05 −11.53 10.81 −9.07
82 GSDCTTIHCNYM 0.0143 −6.50 160.9 12.41 11.92 3.96 11.72 5.59
83 PHRERCSDSDGL 0.0295 −5.68 181.5 19.33 18.11 6.30 20.34 −5.22
84 TTIHYNYICNSS 0.0145 −8.46 202.8 10.59 11.80 −11.38 11.90 −12.41
85 HMTEVRRYPHHER 0.0469 −8.23 289.7 26.42 24.92 5.67 26.54 −0.44
86 YAEGDVHATSKPARR 0.0338 −6.32 239.1 21.38 20.04 6.25 22.15 −3.60
87 LAKTCPVRLWVDSTPP 0.0187 −8.68 258.5 15.13 13.77 9.00 14.65 3.20
88 VVRRCPHQRCSDSDGL 0.0311 −8.48 244.3 20.75 18.44 11.12 20.92 −0.82
89 YKLVVVGAAGVGKSALT 0.0204 −8.99 224.6 14.22 14.07 1.09 15.08 −6.03
90 KQIINMWQEVGKAMYAPPISGQIRRIHIGPGRAFYTTKN 0.0288 −24.13 702.2 17.78 16.91 4.92 18.39 −3.41

Validation set
91 KKKK 0.0737 −2.48 100.2 33.03 35.17 −6.47 31.88 3.47
92 AAAAA 0.0161 0.00 28.3 12.34 13.36 −8.27 11.40 7.64
93 YGGFM 0.0121 −1.83 87.0 9.53 11.81 −23.89 9.56 −0.35
94 VISNDVCAQV 0.0072 −7.34 127.1 5.83 8.69 −48.99 6.75 −15.81
95 CRHHRRRHRRGC 0.0710 −5.50 252.7 29.68 34.54 −16.38 30.89 −4.06
96 HMTEVRHCPHHER 0.0484 −7.57 251.6 26.41 25.35 4.02 26.36 0.21
97 LAKTCPVRLWVDS 0.0210 −8.15 218.8 10.510 9.91 5.71 16.03 −52.51
98 RTHCQSHYRRRHCSR 0.0560 −7.49 308.0 28.96 28.72 0.84 27.64 4.54
99 EPPEVGSDYHHPLQLHV 0.0238 −10.06 290.1 16.91 15.60 7.77 16.62 1.73

100 KLVVVGAGDVGKSALTI 0.0198 −10.68 218.3 13.69 13.29 2.94 13.76 −0.52
101 TPPPGTRVQQSQHMTEV 0.0184 −8.44 270.6 14.17 13.86 2.15 14.02 1.08
102 FLTPKKLQCVDLHVISNDVCAQVHPQKVTK 0.0295 −20.82 494.9 18.68 16.35 12.47 18.65 0.16

a Definitions of descriptors are given in the text.

eters contributing to the peptides electrophoretic mobilities as
[13]:

µ = p
Q

M2/3 + e
∑

Es,c + m
∑

MR (1)

whereQ/M2/3 is a hybrid parameter combining the charge over
mass ratio in the form of Offord empirical model,Es,c is the cor-
rected steric substituent constant and MR is molar refractivity.
These descriptors were chosen from a large set of parameters
such as effective net charge, molar mass, number of amino
acid residue, average residue mass, molecular volume, surface
area, hydrophobicity, isoelectric point value, strain parameter,

Z-scale and alpha-helix content[14,15]. A detailed description
of the stepwise multiple linear regression procedure used for
choosing these descriptors is given in our previous paper[13].
The most common method for calculating peptide charges is to
use the Henderson-Hasselbach equation[16]. According to this
method, the net charge of a peptide at pH 2.5 can be calculated
as the sum of all charged amino acid residues and carboxy- and
amino-terminals. Each arginine (R), histidine (H), lysine (K) and
N-terminal contribute a charge of +1; while each aspartic acid
(D) (pKa 3.5), glutamic acid (E) (pKa 4.5) and the C-terminal
(pKa 3.2) contributes a charge of−0.091,−0.01 and−0.166 at
pH 2.5, respectively. The parameters ofEs,c and MR for each
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Table 2
Specifications of the selected MLR model

Descriptor Notation Coefficient Mean effecta

Charge to size ratio QM 380.080 (±17.360) 9.845
Corrected steric substituent constant Es,c 0.292 (±0.170) −1.775
Molecular refractivity MR 0.009 (±0.006) 1.514
Constant 7.009 (±0.512)

a Mean effect of a descriptor is the product of its mean and regression coefficient in the MLR model.

amino acid is taken from the references[17,18].
∑

Es,c and∑
MR for each peptide were obtained using an additive model

(i.e. these parameters for a peptide is simply the sum of the cor-
responding parameters of amino acids included in the peptide).
The calculated values of these parameters for all peptides in the
training, test and validation sets are given inTable 1. The best
MLR model is one that has high correlation coefficient (R) and
F-values, low standard deviation and high predictive ability. The
specifications for the best MLR model (Eq.(1)) are presented in
Table 2.

2.3. Artificial neural networks model

A detailed description of theory behind artificial neural net-
works has been adequately described elsewhere[19–22]. A
three-layer back-propagation network with a sigmoidal trans-
fer function was designed in the present work. This network is
written in C++ in our laboratory. The three descriptors appear-
ing in our previous QSMR model were used as input parameters
for the network generation. The signals from the output layer
represent the electrophoretic mobilities of the peptides. Such an
ANN may be designed as 3-y-1 net to indicate the number of
nodes in input, hidden and output layers, respectively. Gener-
ally, the neural network methodology has several empirically
determined parameters. These include: (1) when to stop training
( , (2)
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to test the utility of the model, we have simulated the theoreti-
cal peptide maps of the digests of melittin, glucagon and horse
cytochromeC polypeptide and proteins (see Section3.4).

In order to simulate an electropherogram, first the ANN cal-
culated electrophoretic mobilities were converted to migration
times using the same values for the experimental parameters as
reported by Janini et al.[10]. Values of 37 and 30 cm were used
for the total length of the column and injector-to-detector length,
respectively. Also, a running voltage of 8 kV was used for the
purpose of this conversion. To simulate the peak of each theo-
retical fragment, it was assumed that the area for each peak is
proportional to the number of peptide bonds. It is shown that at
200 nm, the absorbance of a peptide is largely attributed to the
peptide bonds while the contribution of amino acids residues
can be ignored[27,28]. For the sake of convenience, same peak
width was used for each simulated peak in this work, which
makes the peak height proportional to the number of peptide
bonds.

3. Results and discussion

To inspect the robustness of a model, one should choose a
very diverse data set consisting of peptides with wide range of
structural properties. Therefore, in the present work we have
applied a similar strategy (i.e. using the same structural descrip-
t of a
m ore
h ined
f
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w chers
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i.e. the number of iterations or the convergence criterion)
he number of hidden nodes, and (3) learning rate and mo
um terms. The values of constructed ANNs parameters
ptimized with the procedure that was reported in our prev
orks[23–25]. The initial weights were chosen randomly. T
rogram is written in such a way that the randomized we
epend on the number of input, hidden and output nodes. B

raining, the output and inputs (except for the values of the O
odel) were normalized between 0 and 1. To evaluate the

ormance of the ANN, standard error of calibration (SEC)
tandard error of prediction (SEP) were used[26]. The num
er of neurons of the hidden layer with the minimum valu
EC was selected as the optimum number. Learning rat
omentum were optimized in a similar way. We have used

alidation set to examine the validity of the ANN model.

.4. Modeling of peptide maps
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ore diverse peptide set that included significantly larger, m
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rom the paper by Janini et al.[12].

.1. Multiple linear regression analysis

The MLR calculated values of electrophoretic mobilities
ll peptides are shown inTable 1. Also, the regression resu

or the selected MLR model are presented inTable 2. It can be
een that the most important descriptor is the hybrid param
f charge-to-size ratio (Offord model). This descriptor show
ean effect of 9.845, which is the largest among the param
ppearing in the model. This is in agreement with our prev
ork and confirms the conclusion reached by many resear

4,11–13]. However, a major problem with this parameter is
ccuracy of the calculated charge, which is controversial i

iterature[29–31]. Although Rickard et al. have claimed tha
H 2.5 a good agreement is expected between the calc
nd actual charge, this is not the case for hydrophobic or h
harged peptides[30]. At this pH, for hydrophobic peptides va
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Fig. 1. Plot of the MLR calculated electrophoretic mobilities against the exper-
imental values of peptide mobility for the test and validation sets.

ations in the ionization constants ofD andE might be significant,
while for highly charged peptides the calculated charges might
deviate from the actual one due to mutual electrostatic interac-
tions of charged groups in proximity of each other. Cifuentes and
Poppe have presented a model for predicting pKa values of pep-
tides considering the mutual electrostatic interaction of charged
groups, but their model is empirical in nature and time con-
suming[31]. Since the charge-to-mass ratio parameter plays the
major role in the mechanism of electrophoretic mobilities, the
MLR calculated mobilities for hydrophobic and highly charged
peptides might deviate considerably from the experimental val-
ues. Inspection ofTable 1shows that this is true for most of
the highly charged or hydrophobic peptides. The peptides 48,
68 and 70 with charges of 11.83, 15.83 and 12.72, respectively,
are the most highly charged peptides inTable 1. The MLR cal-
culated values for these peptides show a deviation of−17.51,
−18.21 and−6.24%, respectively. On the other hand, among the
peptides listed inTable 1peptides 2, 30 and 94 show the lowest
charges of 0.65, 0.73 and 0.74, respectively. The MLR calcu
lated mobilities of these peptides also show high deviations o
−26.33,−43.70 and−48.99%, respectively. Jean Luc et al. have
reported a hydrophobic parameter, which can be considered a
a measure for the hydrophobicity of peptides[32]. They have
obtained this parameter from the partitioning ofN-acetyl-amino
acid amides in octanol/water system[32]. Based on this parame-
ter, peptides 66, 90 and 102 ofTable 1are the most hydrophobic
o ly,
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Table 3
Architecture and specifications of the ANN model

Number of nodes in the input layer 3
Number of nodes in the hidden layer 3
Number of nodes in the output layer 1
Number of iterations 35000
Learning rate 0.7
Momentum 0.9

3.2. Artificial neural networks analysis

The most important advantage of the artificial neural net-
works over regression analyses is their ability to allow for
the flexible mapping of the selected features by manipulating
their functional dependence implicitly. Developing networks
and comparing them with the MLR models provides us the
opportunity to investigate the nonlinear characteristics of the
dependence of electrophoretic mobilities of peptides on struc-
tural descriptors. In order to have a meaningful comparison, the
variables for the linear and nonlinear treatments should be the
same. Therefore, the three descriptors appearing in the MLR
model have been considered as the inputs for generating the net-
works. After optimizing the parameters needed for constructing
ANNs, a neural network with architecture of 3-3-1 was obtained,
which its specifications are given inTable 3. We used the test
set consisting of twenty peptides to optimize the learning iter-
ation size and avoid overtraining. To evaluate the network, the
electrophoretic mobilities of peptides included in the validation
set were predicted and are shown inTable 1. Fig. 2 shows the
plot of the ANN predicted versus the experimental values of
the electrophoretic mobilities for the test and validation sets.
The agreement between the predicted and observed mobilities
using the ANN modeling (R2 = 0.970) was considerably higher
than that with the MLR (R2 = 0.930) for the same set of peptides
descriptors. Inspection of the results given inTable 1shows that
t lin-
e hly
c dis-
c

F xper-
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nes with deviations of−66.33, 4.92 and 12.47%, respective
n their MLR calculated values.Fig. 1 shows the correlatio
etween the MLR calculated and the experimental values o
lectrophoretic mobilities of peptides included in the test
alidation sets. The correlation ofR2 = 0.930 indicates a re
onable agreement between these values and also demon
ome improvements over those obtained using the Offord m
hese improvements can be attributed to the inclusion o
arameters of corrected steric constant and molecular refr

ty into the MLR model. However, this model shows weakn
n predicting the electrophoretic mobilities of highly charg
ow charged and hydrophobic peptides.
-
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his improvement is mostly due to a better ability of the non
ar model in predicting the electrophoretic mobilities of hig
harged, low charged or hydrophobic peptides. A detailed
ussion of this improvement is given in the next section.Fig. 3

ig. 2. Plot of the ANN calculated electrophoretic mobilities against the e
mental values for the test and validation sets.



64 M. Jalali-Heravi et al. / J. Chromatogr. A 1096 (2005) 58–68

Table 4
Comparison of the statistics for the MLR and ANN models

Model R2
Training R2

Test R2
Validation SETraining SETest SEValidation F

MLR 0.903 0.907 0.949 1.89 1.77 0.91 872
ANN 0.959 0.960 0.993 1.04 0.96 0.65 3153

shows a plot of the residuals of ANN predicted values of the
electrophoretic mobilities against the experimental values. The
propagation of the residuals on both sides of zero indicates that
no systematic error exists in the development of the neural net-
work.

Table 4 lists more detailed statistics about the predictive
power of the MLR and ANN models. It can be seen from this
table that R2 values for the ANN model are considerably higher
than those for the MLR model for all three, training, test and val-
idation sets. Also, the ANN predicted values show much lower
standard errors as compared with those of the MLR model. The
ANN model also reveals a higher value for theF-statistic. These
results clearly reconfirm our earlier conclusion about the nonlin-
ear behavior of the electrophoretic mobility of peptides, which
is incorporated in the ANN modeling.

3.3. Prediction of highly charged and hydrophobic peptides

Despite the voluminous amount of attempt reported for cal-
culating the electrophoretic mobilities of peptides[6–12,31],
there is still no robust model to be able to predict accurately
this parameter for all categories of peptides, especially highly
charged and hydrophobic peptides. Notable exceptions to the
previous works are a multi-variable computer model presented
by Janini and coworkers[11,12]and our recent ANN model[13].
J ele
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upon the accurate measurement of the electrophoretic mobilities
of a large number of peptides with a wide range of charge and
molar mass. However, calculations of different functions in their
model depend entirely on the data set and changing the basis set
requires new equations for these functions. The ANN model has
overcome the problem of robustness by incorporating three gen-
eral descriptors as its inputs. To demonstrate the predictive abil-
ity of the ANN model, we have highlighted the results for some
of the highly charged and hydrophobic peptides inTable 5. For
the sake of comparison the Offord, multi-variable[12] and MLR
calculated values for the electrophoretic mobilities together with
some statistics are also included in this table. The data included
in Table 5represent peptides with different sizes and were cho-
sen based on a charge larger than 4 and a hydrophobic parameter
larger than 3. The results of this table clearly demonstrate a sig-
nificant improvement for the multi-variable and ANN models
compared with the MLR and the Offord models. Although there
is no significant differences between theR2 values of multi-
variable and ANN models, the later shows a lower standard error
(SE) and relative standard deviation (RSD). It can be seen from
Table 5that the ANN model shows a RSD of 4.43% which
is much lower than those of the Offord and MLR models. It
should be noted that we have developed this model using the
experimental mobilities which demonstrate an average RSD of
2.34% themselves. Despite the improvements, for both models
several inconsistencies exist between the sequences of the real
a and
h ies is
s rder
f ies
f able
m y
f

F highly
c .
anini and coworkers, based on a data set consisted of the
rophoretic mobilities of 58 peptides that varied in size from
9 amino acids examined the existing empirical models tha
elates electrophoretic mobility with physical parameters. T
eached to the conclusion that the charge-to-size parame
fford offers the best fit to their experimental data[10]. How-
ver, inspection of their results revealed a systematic dev
or small peptides with large positive charge, such as the ly
omologous withn = 2–5. To address this deficiency, Janini e
resented a multi-variable model that takes into account
hysical properties that were neglected by the Offord m

11,12]. However, the success of their model was depen

ig. 3. Plot of the residuals vs. the experimental values of peptide mobili
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nd predicted electrophoretic mobilities of highly charged
ydrophobic peptides. A summary of these inconsistenc
hown inFig. 4. Peptides 10, 12 and 19 show an incorrect o
or the ANN model, while the order of electrophoretic mobilit
or peptides 9, 13, 19 and 22 is not correct for the multi-vari
odel. Comparison of the results inTable 5reveals superiorit

or ANN model over the MLR and the Offord model. TheR2

ig. 4. Sequences of the real and predicted electrophoretic mobilities of
harged and hydrophobic peptides using multi-variable and ANN models
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Table 5
Comparison of different models for highly charged and hydrophobic peptides

No. Peptide Exp Offord Multi-vard MLR ANN

µef × 105 µef × 105 µef × 105 µef × 105 Percent
deviation

µef × 105 Percent
deviation

1 FFa 12.81 12.98 13.18 13.99 −9.21 13.06 −1.95
2 FLa 13.33 13.82 13.91 14.30 −7.28 13.51 −1.35
3 LLa 14.55 14.85 14.58 14.73 −1.24 14.61 −0.41
4 WWa 11.05 11.52 10.91 13.23 −19.73 12.80 −15.84
5 FFFa 10.38 10.59 10.76 12.48 −20.23 11.92 −14.84
6 KKKK b 33.03 45.34 33.53 35.17 −6.48 31.88 3.48
7 KKKKK b 33.03 47.26 33.18 36.45 −10.35 31.76 3.84
8 YGGFLa 9.75 9.62 9.70 11.76 −20.62 10.58 −8.51
9 ACHGRDRRTb 26.54 28.80 28.54 24.39 8.10 26.90 −1.36

10 VVRRYPHHEb 27.38 27.40 25.46 23.24 15.12 25.55 6.68
11 CRHRRRHRRGCb 29.68 41.78 29.75 33.25 −12.03 30.72 −3.50
12 CRHHRRRHRRGCb 29.68 43.74 29.61 34.54 −16.37 30.89 −4.08
13 HMTEVRRYPHHERb 26.42 30.32 27.11 24.92 5.68 26.54 −0.45
14 HMTEVRHCPHHERb 26.41 29.55 25.07 25.35 4.01 26.36 0.19
15 HRSCRRRKRRSCRHRb 30.27 45.09 31.41 35.57 −17.51 30.68 −1.35
16 RTHCQSHYRRRHCSRb 28.96 34.99 26.39 28.72 0.83 27.64 4.56
17 YAEGDVHATSKPARRb 21.38 22.10 21.94 20.04 6.27 22.15 −3.60
18 VVRRCPHQRCSDSDGLb 20.75 20.54 19.22 18.44 11.13 20.92 −0.82
19 DGLAPPQHRIRVEGNLRb 18.98 20.21 20.49 18.10 4.64 20.40 −7.48
20 NHQLLSPAKTGWRIFHPc 19.42 20.14 18.85 18.40 5.25 20.28 −4.43
21 RTHGQSHYRRRHCSRRRLHRIHRRQb 29.01 43.60 28.32 34.29 −18.20 28.57 1.52
22 FLTPKKLQCVDLHVISNDVCAQVHPQKVTKc 18.68 19.59 19.83 16.35 12.47 18.65 0.16
23 KQIINMWQEVGKAMYAPPISGQIRRIHIGPGRAFYTTKNc 17.78 19.21 17.71 16.91 4.89 18.39 −3.43
24 DRVIEVVQGAYRAIRHIPRRIRQGLERRIHIGPGRAFYTTKNc 20.83 27.85 21.79 22.13 −6.24 21.80 −4.66

R2 0.91 0.98 0.91 0.99
Standard error 3.67 1.09 2.60 0.80
RSD 33.41 4.88 12.17 4.43

a Hydrophobic peptide.
b Highly-charged peptide.
c Hydrophobic and highly-charged peptide.
d Multi-variable model from Janini et al. work[12].

value of 0.990 for the ANN should be compared with a value
of 0.910 for the MLR and Offord models. Also, SE and RSD
values of 0.80 and 4.43%, respectively, for the ANN model
should be compared with 2.60, 3.67 and 12.17 and 33.41% for
the MLR and Offord models, respectively. Large deviations of
−17.51,−18.21 and−6.24% for the MLR calculated values
of the most highly charged peptides 48, 68 and 70, respectively,
should be compared with the values of−1.34, 1.52 and−4.64%
for their ANN calculated counterparts. Also, deviations of 4.92
and 12.4% for the MLR calculated electrophoretic mobilities of
highly hydrophobic peptides of 90 and 102, respectively, should
be compared with the values of−3.41 and 0.16% for their ANN
counterparts. A notable exception is the hydrophobic peptide
FIGITEAAANLVPMVATV ( Table 1) with a large deviation of
−66.33 and−82.22% for the MLR and ANN calculated values,
respectively. Although, we are uncertain about the origin of these
deviations, they could be due to the experimental uncertainty.

3.4. Simulation of peptide maps of protein digests

The long-range goal of developing theoretical models, which
can accurately predict the CZE parameters, such as retention
time or electrophoretic mobility, is the construction of a database

of peptide maps. Reaching this goal means that one can eas-
ily identify unknown proteins by submitting the experimental
maps to the database and searching for the closest match in
terms of the migration times of the major peaks. To explore
the utility of the ANN model in simulation of the CZE pep-
tide maps, the profiles for the endoproteinase Lys-C digests of a
peptide sequencing standard, melittin GIGAVLKVLTTGLPAL-
ISWIKRKRQQ, and two more complicated proteins namely
glucagon and horse cytochromeC were studied in this work.
Choosing these peptides were based on possibility of compar-
ison of the ANN simulated maps with the experimental and
multi-variable simulated ones.

Fig. 5 demonstrates the experimental and ANN simulated
maps for the endoproteinase Lys-C digest of the peptide sequenc-
ing standard of melittin. The correct migration order of peptides
and corresponding retention times agrees fairly with the exper-
imental electropherogram. However, multi-variable results also
show a correct order and accurate retention times[12].

Next, we have considered glucagon, a polypeptide with 29
amino acid residues. This polypeptide can be used as a control
for proteolytic digestion, sequencing and amino acid analysis.
Janini and coworkers digested this protein with endoproteinase
Glu-C with characteristic cleavage at the C-terminal of aspar-
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Fig. 5. Experimental and ANN simulated maps for the endoproteinase Lys-C
digest of melittin.

tic acid (D) and glutamic acid (E) residues. Therefore, after a
complete digestion, four fragments are expected for this protein.
These fragments are listed inTable 6. Also, the values for the
three descriptors together with the calculated MLR and ANN
values for the electrophoretic mobilities of glucagon fragments
are summarized in this table. The ANN calculated mobilities
were converted to the migration times and simulated electro-
pherogram is shown inFig. 6. For the purpose of comparison,
the experimental and simulated electropherograms reported by
Janini et al., are also shown in this figure. Inspection ofFig. 6
reveals an excellent matching between the line positions and
a reasonable agreement between the relative heights of the
experimental and simulated peaks. It seems that both mod-
els of multi-variable and ANN overestimate the mobility for
the FVQWLMNT fragment and therefore, a smaller value for
the corresponding migration time. Validity of this conclusion

Table 6
Descriptor values together with MLR and ANN calculated mobilities of theoret-
ical fragments of Lys-C digest of cytochromeC and Glu-C digest of Glucagon

No. Peptide sequence Descriptors MLR ANN

QM Es,c MR µef ×
105

µef ×
105

Glucagon digest
1 SRRAQD 0.0338 −2.92 103.6 19.88 22.05

1
5

C
2
9
7
9
8
7
1
0
8
2
6
1
2
1
1

Fig. 6. Experimental, ANN and multi-variable simulated electropherogram of
glucagons.

depends upon the accuracy of assignments of the peaks. How-
ever, one should consider the possibility of several shortcomings
in experiment such as imperfect enzymatic digestion, impurity
and autolysis of the endoproteinase.

Finally, we studied the relatively complex protein of horse
cytochromeC with 104 amino acid residues. This protein also
was digested with endoproteinase Lys-C with specificity of
cleavage at the C-terminal of lysine residues[12]. The theo-
retical fragments of this protein together with the values of the
descriptors and corresponding MLR and ANN calculated mobil-
ities are demonstrated inTable 6. Fig. 7shows the experimental
and ANN simulated electropherogram of cytochromeC. For
the sake of comparison, the simulated electropherogram of this
protein obtained by Janini et al. is also included in this table.
Inspection ofFig. 7 shows that the experimental electrophero-
gram of cytochromeC have a striking similarity to the ANN
simulated electropherogram. Almost each simulated peak has a
counterpart in the experimental electropherogram with a good
2 YSKYLD 0.0204 −4.32 127.1 14.60 14.4
3 HSQGTFTSD 0.0177−4.18 123.6 13.56 12.7
4 FVQWLMNT 0.0081 −6.45 172.9 9.69 7.90

ytochromeC digest
5 GK 0.0530 −0.42 26.08 27.27 29.5
6 HK 0.0657 −1.28 48.84 32.02 31.3
7 NK 0.0450 −1.40 39.5 24.03 27.2
8 GGK 0.0450 −0.22 27.11 24.27 27.2
9 ATNE 0.0144 −1.93 48.2 12.32 10.1

10 GDVEK 0.0259 −2.91 68.8 16.60 17.6
11 GITWK 0.0257 −3.22 97.3 16.66 17.6
12 IFVQK 0.0249 −4.64 108.7 16.03 17.0
13 YIPGTK 0.0238 −3.26 103.3 15.97 16.4
14 MIFAGIK 0.0217 −5.17 124.0 14.79 15.0
15 CAQCHTVEK 0.0279 −4.14 144.4 17.64 18.8
16 TEREDLIAYLK 0.0223 −8.58 207.2 14.74 15.5
17 EETLMEYLENPK 0.0137 −8.42 224.3 11.68 10.9
18 TGPNLHGLFGRK 0.0322−5.79 191.4 19.20 20.8
19 TGQAPGFTYTDANK 0.0135 −5.39 194.8 12.22 11.1
agreement between their migration times. However, Janini et al.
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Fig. 7. Experimental, ANN and multi-variable simulated electropherogram of
cytochromeC.

have obtained only 13 peaks for the 15 theoretical fragments
They believed that the pairs of fragments (17, 19), (5, 7) and
(10, 11) co-migrated because of the closeness of their migratio
time. Our result confirms this conclusion except for the pairs of
(5, 7), which is replaced with the pairs of (5, 8) in this work.

4. Conclusion

Recently, our research is focused on developing a multivari-
ate model, which can be used as a tool in the construction of
database of peptide maps. As a long-range aim we have consi
ered the specifications of simplicity, accuracy and robustness fo
the model in predicting the CZE parameters of peptides. Also to
get this dream closer to reality, the model must be able to predic
accurately the CZE parameters of peptides with identical amino
acid residues but different sequences. Three steps were consi
ered for reaching this goal: (1) Developing a model by using
the descriptors as simple and general as possible and examinin
its ability in accurate prediction of the electrophoretic mobili-
ties of peptides. It is shown that the three simple descriptors o

charge-over-mass ratio ofQ/M2/3, corrected steric substituent
constant and molar refractivity are very useful in predicting the
electrophoretic mobilities of different categories of peptides. (2)
To investigate the robustness of the model, a more diverse data
set obtained in different experimental conditions was needed.
To fulfill this, a more diverse data set consisted of 102 pep-
tides was chosen in this work. The robustness of the neural
network model was exhibited by accurate ANN calculated elec-
trophoretic mobilities of all categories of peptides, obtained in
different experimental conditions. Also, simulating the endo-
proteinase digests of melittin, glucagon and horse cytochrome
C maps showed the utility of the model in simulation of the
CZE peptide maps. (3) A research is under way in our group to
explore the use of a new series of sequence-descriptors. The pre-
liminary results are promising. Success in this step improves the
capability of the model in simulating proteins maps consisted of
isomeric peptides.
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